If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2=22+10x
We move all terms to the left:
5x^2-(22+10x)=0
We add all the numbers together, and all the variables
5x^2-(10x+22)=0
We get rid of parentheses
5x^2-10x-22=0
a = 5; b = -10; c = -22;
Δ = b2-4ac
Δ = -102-4·5·(-22)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{15}}{2*5}=\frac{10-6\sqrt{15}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{15}}{2*5}=\frac{10+6\sqrt{15}}{10} $
| 20y–16=18y–9 | | 7b-5b+3b+5b=10 | | -118+15x=162+7x | | (2x+5)+31=4x-10 | | -118+15x=162 | | 10y^2-9y=0 | | 80-2x=84 | | 5^(6x-3)=36 | | 5^6x-3=36 | | 12x-28=12x-12 | | 20x+50.2x=25200 | | e×5=35 | | -64+4x=15x+101 | | (20x+50)2x=25200 | | 5(x-3)=2x-18 | | x2x+4=19 | | 24x-12=-12+24x | | 3.5d+6.25=4+4.25 | | 1.1x+5=1.5x+3 | | x+19=x+29/2 | | 8v=7v-16 | | -6x=15=15-6x | | x(-17.7)+19.6=27.8 | | 7v-16=8v | | -3x-171=10x+115 | | 4x-8=4((2x+1)/3) | | 8x+5x-80=60-7x | | 40x^2+100x=25200 | | -8x+24=-8x-24 | | 00.2x=1.6 | | (7/2)-2=4+7t | | 12x-128=-7x+214 |